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1 Notations

2 Introduction

2.1 Compound Matrices and Differential Equations

2.1.1 Minors, Cofactor and Adjugates

Definition 1. aiifﬁfii =det[as], 1 < i,j < p, is the minor of A determined by
the rows 71, ...,p and the columns si, ..., sp.

S15--438p -Sp

Definition 2. When p < m = n, A1)+ denotes the cofactor of aii_“,«p =
det[ai].

al a? a3
1ar ay ol a2
When A= | a} a3 a3 |, then we have A2 = —al3 = — a} a%
ay a3 a3 378

Definition 3. The cofactor matriz of a square matriz A is

cof A= [A{], ,j=1,..,n



and the adjugate (or classical adjoint) matriz of A is

adjA = (cofA)T

2.1.2 Multiplicative Compounds

For any m xn matrix A and 1 < k < minm, n, the k-th multiplicative compound

A®) of A is the (?) X <Z) -dimensional matrix defined as follows.

Definition 4. If1 <r < (7:) and1l < s < (Z) , then the entry in the r-th row

and the s-th column of A®) is ayt ik, where (r) = (r1,...,11) is the r-th member
of the lezicographic ordering of the integers 1 < 11 <19 < ... < 1 < m and
(8) = (81, ..., Sk) is the s-th member in the lexicographic ordering of all k-tuples

of the integers 1 < s1 < s9 < ... < § < n.

1 2 12
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Thus,if A= | . . |, then we have A®) = . , which is a 9 ) %
1 2 12
A Gy am—l,m

1 matrix.

Theorem 1. If AB = C, then A®B®) = C®) where A,B are n X p, p X n
matrices respectively.

Theorem 2. The eigenvalues of A% are AsiAgy Ay, 1 <851 <8 <o <5 <
n, where A1, ..., A\, are the eigenvalues of A.

2.1.3 Additive Compounds

Let A be a n X n matrix and let 1 < k < n. Then the k-th additive compound
AR of A is a (Z) X (Z) matrix defined as follows.

Definition 5.

AW = L )9 = im AT+ B A)® — 1] (1)
dt h—0

It follows that the entry b in B = AlF is:

A bagy, i) = (5)

B — (—1)"*iay, if exactly one entry r; in (r) does not occur in (s) and s;
" does not occur in (r)
0, if (r) differs from (s) in two or more entries
(2)

In the special cases k = 1,k = n, we find

Al =4 A =Tra
Properties 1. The term additive compound arises since

(A+ B)F = AlM 4 BIK] (3)



Theorem 3. The eigenvalues of A*! are Aoy T sy o+ A, 1 <51 <852 <
we < Sk <, where A1, ..., A\ are the eigenvalues of A.

Theorem 4. For n X n matriz A, the equation holds:

(exp(A)) ™) = exp(A™) (4)

2.2 Linear Operators

In this section we consider multiplicative and additive compounds from the
perspective of linear operators between linear spaces.

Definition 6. Suppose that X is an n-dimentional linear space. Then (AX)* is
the k-th wedge sapce whose bases are e;; Nej, N...Nej,, 1 <y <ig < ... < <n.
And the entries of v Av2 A ... AVF at e;, ANeg, A... Nej, are det(v;), 1 <j,s <k

Proposition 1. Suppose A is an n xn matriz and viewed as an operator on the
linear space X, then A®) and AF! are matrices viewed as operators on (AX)*,
satisfying:

A® (P AV AL AUE) = Avt A AVE A LA AR (5)
k

A AP AL AR =) 0t AL A AT AL AR (6)
s=1

We can prove all of the previous theorems and properties with Properties??.

2.3 Nonhomogeneous differential equations

To consider about the generalized problem, we need to firstly review the original
form. We have homogeneous equation

&= A(t)x (7)
And the nonhomogeneous equation
T=A@{)z + f(z) (8)

Definition 7. Let X(t) be a fundamental matriz for (1) and let | - | denote
any matriz norm. We may assume without loss of generality that the norm is
induced by a vector norm. The equation is said to be

1. Stable if there is a constant K such that | X(t)] < K, 0 <t < 0.
2. Asymptotically stable if | X (t)] — 0, as t — oo

3. Uniformly stable if there ewists a constant K that |X(t)X 1(ty)| < K,
0<ty <t <oo.

4. Uniformly asymptotically stable if there exist constants K, > 0 such that
X)X (to)] < Ke 20,0 < g < ¢ < o0

To further get some properties, we need to give some restrictions on those
solutions.

() msuply(t)] < oo,
I . (L)
(#4) htn_1>1£f ly(t)] =0 = tlg(r)lo y(t) = 0.



Proposition 2. Suppose that the homogeneous equation @ 18 uniformly stable
and f € L1([0,00)]). Then the solution space of the nonhomogeneous equation
() satisfies condition (L).

Proposition 3. Suppose that the homogeneous equation @) 1s uniformly stable
and asymptotically stable and that f € L1([0,00)). Then all solutions x = x(t)
of the nonhomogeneous equation @ satisfy limy_, o x(t) = 0.

Proposition 4. (Muldowney,1990). Let X be a linear space of functions x :
[0,00) — R™ that satisfies (L). Then

codim X, < k & &&= ™),
Here X¥) denotes the k-th exterior power of X, 1 < k < n, which is defined by
X®) = span{z' A AzF 2t e X}

and Xy and Xo(k) denote subspaces of X and X¥) | respectively, defined by

Xo={zeXx: tlggo:n(t) =0},

XM = fwex® . Jlim w(t) = 0}

Using the three previous propositions, we can state one of the main results:
Theorem 5. Let x;(t) be a solution of
o' = A(t)x + fit),
where f; € L1]0,00), i = 1,...,k. Suppose that the homogeneous equation
y' = Alt)y

is uniformly stable and that the k-th compound equation

is uniformly stable and asymptotically stable. Then there exist constants cy, ..., Cg,
not all zero,such that

Jim (erzy () + - + cra(t) = 0,

3 Description of the general form

Consider the evolution in time of objects like

z(t) = z(t) Ay (t). 9)

where z,y are solutions of homogeneous differential equations & = A(t)x and
y = B(t)y, respectively.

We have shown that z = APz if B(t) = A(t).Now we try to find out if
similar properties hold for general z.



3.1 Nonexistence of the coefficient matrix

Firstly we want to know if such a matrix M exists, such that 2/ = M(t)z. The
solutions x and y to two homogeneous equations can be viewed to be unralated
if there is no restrictions on A(t), B(t).

Proposition 5. If the solutions x(t) and y(t) are independent, i.e. the entries
21(t), z2(t), ..., xn(t), y1(t),y2(t), ..., yn(t) are viewed as bases of vector spaces,
then the matriz M (t) doesn’t exist.

Proof. To prove the proposition, we simply expand z and its derivative z’. It is
easily seen that

2 =a'(t) Ny(t) + x(t) Ay (t) = A(t)x(t) Ay(t) + z(t) A B(t)y(t).

Suppose the basis of the space R is el,...,e" and ey, ..., e, be the coordinate
operator. Then the 2-th basis is e Ae?, 1 <i < j < n.

we compare the coordinate at e’ A e7.

For z = x(t) A y(t), we have

o et (€@(0) ely(®)
(e; Aej,x(t) Ay(t)) = det j(a(t) ej(y(t)))

ei Aej, A(t)x(t) Ay(t)) = det (ejiiﬁiiiﬁt

st = (51 S0

— (S0 020 - (3 bl ®) (1)
k=1 k=1

Observe that the coordinate of z has a form of commutator. Compare it
with 2z’ we can easily see that if such a matrix M (t) exists and A(t), B(t) are not
degenerate, we must force a;, = by, which implies that A(t) = B(t), 2’ = APz,
the former conclusion. O

3.2 Special cases

In the previous section, we have shown that M (¢) does not exist for generic A(t)
and B(t), because z(t) and y(t) are free. Now we try to examine z under some
special conditions.

Example 1. The easily condition is diagonalization, under which we can direct
solve the solutions x(t),y(t). Assume A(t), B(t) are similar with a diagonal
matriz A(t) by constant matrices P, Q, respectively. i.e.

z'(t) = P7YA(t)P x(t)
y'(t) = Q 'A(H)Q y(t)



Consider the equation w'(t) = A(t)w(t), we can easily get its fundamental matriz

w1 (t)

W) = ws(t)

wy, (1)

where w; = exp([ Xi(s)ds). Then the fundamental matriz for x,y are P~'W (t)
and Q7 'W (t).

Example 2. When A(t), B(t) are similar by a nonsingular constant matriz P,
i.e. B(t) = PA()P~'. If X(t) is a fundamental matriz for o' = A(t)x then
PX(t) would be a fundamental matriz for y' = B(t)y. Suppose that x(t) and
27 (t) are solutions to x’ = A(t)xz. We have

2(t) = ' (t) A Pad(t),
2 (t) = Ax'(t) A Pa? (t) + x'(t) A PAZI ().

the evolution of z(t) can be calculated directly if we have properties of X (t). But
under the assumption that A(t), B(t) are similar, the nonexistence of M(t) still
holds.

3.3 Local problem

We have seen that the holistic system doesn’t hehave well when we focus on the
matrix A(t) and B(t). So we begin with solutions now.

We assume that all solutions z(t) to 2’ = A(¢t)x satisfies condition (L), and
y(t) as well.

Proposition 6. If Vt € [0,+00), |A(t) — B(t)| # 0, then the solutions of & =
A(t)x and y = B(t)y are linearly independent.

Proof. We only need to prove the solution space Wi of & = A(t)x(t) and solution
space Wy of y = B(t)y satisfy Wi N Wy = {0}. Let the fundamental matrix
of & = A(t)x be X (t), we will prove that for every ¢ € R"/{0}, X (t)c is not a
solution to ¢ = B(t)y.

Suppose X (t)c satisfies X (t)c = B(t) X (t)c, then (X (t) — B(¢t)X (t))c = 0.
As X (t) satisfies X = A(t)X (t), implying (A(t) — B(t))X (t)c = 0. Since X (t)
is non-singular,

(A@t) — B())X (1) = |(A(t) = B(®)[|X(t)| # 0.

So the only solution is zero, contradicting with ¢ € R™/{0}. Therefore
Ve € R™/{0}, X (t)c is not a solution to the equation ¢ = B(t)y. i.e. Wi NWy =
{0} O

Theorem 6. Suppose that x(t) is a solution of @ = A(t)x and that y(t) is a
solution of y = B(t)y, where |A(t)—B(t)| # 0, Vt € [0,00). Let z(t) = x(t) Ay(t)
be the wedge product of them. Then there exists an n x n matriz C(t), which
satisfies £(t) = CP2lz(t).



Proof. Take k — 1 solutions in the solution system of &(t) = A(t)x(t) that are
linearly independent with x(t) and denote them as x2(t),...,z"(¢). And take
another n — k — 1 vectors in the solution system of ¢(t) = B(t)y(t) that are
linearly indepent with y(t), and denote them as y*+2(t),...,y™(t). Let

W () = [a(t), 2 (1), . 2" (1), 5(1), 52 (2), oy (2)]

By Propositiorﬁl7 we know that W (¢) is non-singular.

Let C(t) = W(t)W~1(t), which is W = C(t)W(t), we know that z(t), y(t)
are both solutions to this homogeneous equation. By the former propositions,
we get #(t) = CPRI(t)z(t). O
Proposition 7. Suppose |A(t) — B(t)| # 0, C(t) is an arbitrary matriz, define
L rank(A®t) — CO(t))

el rank(B(t) — C(t))

rA

B

are constants for all t € [0, 00).
then the equation 2 = CPlz have (n — ra)(n — rg) solutions in the form

z(t) Ay(t).

Proof. There is an underlying condition
ra+rp =rank(A(t) — B(t)) + rank(B(t) — C(t)) > rank(A(t) — B(t)) =n

Back to our proof, according to the conditions, we can find n — r 4 solutions
2i(t), i = 1,...,n —ra and n — rp solutions ¢/ (), j = 1,...,n — rp such that
(A(t) — C(t)x*(t) =0 and (B(t) — C(t))y’(t) =0, (n—74) + (n —rp) < n.

Meanwhile, the solutions z1(t),...,2" "4, y! ..., y"" " are linearly indepen-
dent by Propositiodﬂ So it can be expanded to a fundamental matrix W (t) of
%2 = C(t)z. Then we have 2°(t) Ay/(t) (1 <i<n—ra, 1 <j<n-—rg)are
(n—ra)(n—rpg) solutions. O

Now we turn to study on holistic system of some selected solutions. Recall
that we have assumed that all solutions to homogeneous equations A(t), B(t)
satisfy condition (L).

Lemma 1. Suppose x(t),y(t) are solutions to & = A(t)x and & = B(t)z, re-
spectively. And z(t) and y(t) are linearly independent. And 3 C(t) such that
x(t),y(t) are solutions to 2(t) = C(t)z and all solutions to w(t) = C(t)w satis-
fies (L). if limy o0 2(t) A y(t) = 0, there are three possible conditions

(1) limy_ 00 2(t) = 0.
(2) lim;_, oo y(t) = 0.
(8) 3 c1,c2 € R/{0} such that limy_, o c12(t) + coy(t) = 0.



Proof. (1) and (2) are obvious, for z(t) and y(t) are bounded because of (L).

Now we assume that both z(t) and y(t) have a distance from 0. According
to (L), there is a sequence {tj }ren such that both z(tx), y(tx) have limits when
k — oo, denote as z°,y° # 0.

By the hypothesis, limg oo 2(tr) A y(tr) = 2% Ay = 0, then there exists
c1,co € R/{0} such that ¢;2°4coy® = 0. We have limg_s o c12(tx) +c2y(t) = 0.
Since c1z(ti) + cay(tx) is a solution of w = C'(t)w and it gives lim;_,o0 c12(t) +
c2y(t) = 0 by condition (L). O

Now we begin to study the condition when lim, ,., z(t) A y(t) = 0 for all
solutions # and some y. Denote them as x!,...,2™ and y*,...,y%, (1 < s <n).

The condition in Propositiorffis strong, without which we can also get some
properties.

n—s+1 n
g ees

Example 3. Ify',...,y° are the linear combination of x ,x™, ie.

[y17y27 "'7ys] = [xn—s-&-l’ veey Z‘n]P7

where P is an s X s non-singular matriz, then the matrix is

where X (t) is the fundamental matriz of @ = A(t)z. Let C(t) = W)W (1)

and we have

Set so = min{n — 5,5} we can see that (t) = ClotUz(t) is asymptotically
stable. So is #(t) = Alsota(t)

Remark 1. Observe that if all x'(t) converge to 0 ast — oo, we have s = n,
And the equation (t) = A(t)xz(t) is asymptotically stable.

Remark 2. If a solution y(t) of y(t) = B(t)y(t) converges to 0 as t — oo,
then 2'(t) Ay(t) — 0 ast — oo for all i = 1,2,...,n, which means y(t) €
spanly!(t), ..., y*(t)].

So suppose that z!,...,2™ (0 < n; < n) converge to 0, and 3!, ...,y** (0 <
s1 < s) converge to 0. If there are solutions x(t), y(¢) that doesn’t converge to 0.
ie.n; <m,s; <s,wecan find ¢1,co € R/{0} such that lim;_, o c12(t)+coy(t) =
0 by LemmdI]

We abstract the properties into a proposition, but we need to firstly introduce
a definition.



Definition 8. Suppose w(t),...,wP(t), p € N, t € [0,00) are p functions that
linearly independent, and satisfy (L). Then there is a smallest number p € N
such that lim; 0o AE_125(t) — 0, (25 € spanw'(t),...,wP(t)], s = 1,..,p),
called p — number of the function space w'(t), ..., wP(t).

Proposition 8. lim;_, ., z(t) A y(t) = 0 for functions some x and some y that
are all bounded. Denote them as z',...,2P and y',...,y?. Suppose i, pa, fio be
the u — numbers of [x1,....2P], [y*,...,y?] and [x',...,2P, 4y, ...,y?]. Then we
have the equation

po = min{yi, pi2}.

Remark 3. With Propositiofd we can examine solutions to homogeneous dif-
ferential equations, And convert the limit of wedges to asymptotically stability
of other homogeneous equations.

4 Nonhomogeneous linear equations

In this section, we will generalize Theorm [5| by generalizing their coefficient
matrices. 4 . . '
=AMz + f(t), i=1,...,k

and suppose x!, 22, ..., 2% are their solutions respectively. Without loss of gen-

erality, we assume that x!, 22, ..., 2" are linearly independent. And we assume
that they are independent at each time ¢, which is a stronger condition.

we try to find an n x n matrix C(t) such that (A%(t) — C(¢))xi(t) = 0 for
i=1,..k

ayy ... aj, c11 ... Cin i
_ =0
ar, ... an, Cnl .-+ Cnn kil

(a},(t) — enn)zh + -+ + (af, — cin)a), =0

(ail(t) - Cnl)xi +ooeet (a;n - Cnn)x:z =0

We first consider the first row of the equation, and we have

1 1 1 .1 1.1
Ty ... X, c11 a1y + -+ a7,
k k k .k k .k
Ty, T, Cln ap ry + -+ ap Ty,

And therefore we can choose c¢y1, ..., ¢1, such that the equation holds. Symmet-
rically we can choose the rest cs1, ..., Csn, $ = 2,...,n, therefore C(t). Now we

have . ‘ ‘
@ =Ct)z" + f'(t), i=1,...k

then we turnt it into the previous form.

Theorem 7. Let xi(t) be a solution of

i = A'(t)z + f(1),



where f; € L1]0,00), i =1, ..., k. Suppose that the homogeneous equation
j=A'(t)y

is uniformly stable for all i =1, ...,k and that we can choose C(t) such that the

k-th compound equation
z=Cl(t)z

is uniformly stable and asymptotically stable, Then there exist constants dy, ..., dy,
not all zero,such that

lim (dyz1(t) + -+ + dpazi(t)) =0,

t—o0
Remark 4. We assumed that all the solutions are linearly independent at every
time t to ensure that the corresponding matriz is always invertible. Without
this assumption the determinant of the matrix may be 0 at some time. We
think maybe those conditions can be solved and described with the language of
Measure Theory and Probability Theory, which is currently beyond our
ability.
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