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1 Notations

2 Introduction

2.1 Compound Matrices and Differential Equations

2.1.1 Minors, Cofactor and Adjugates

Definition 1. a
s1...sp
r1...rp = det[asiri ], 1 ≤ i, j ≤ p, is the minor of A determined by

the rows r1, ..., rp and the columns s1, ..., sp.

Definition 2. When p < m = n, A
s1,...,sp
r1,...rp denotes the cofactor of a

s1...sp
r1...rp =

det[asiri ].

When A =

a11 a21 a31
a12 a22 a32
a13 a23 a33

 , then we have A2
3 = −a1312 = −

∣∣∣∣a11 a21
a13 a23

∣∣∣∣
Definition 3. The cofactor matrix of a square matrix A is

cof A = [Aji ], i, j = 1, ..., n
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and the adjugate (or classical adjoint) matrix of A is

adjA = (cofA)T

2.1.2 Multiplicative Compounds

For any m×n matrix A and 1 ≤ k ≤ minm,n, the k-th multiplicative compound

A(k) of A is the

(
m
k

)
×
(
n
k

)
-dimensional matrix defined as follows.

Definition 4. If 1 ≤ r ≤
(
m
k

)
and 1 ≤ s ≤

(
n
k

)
, then the entry in the r-th row

and the s-th column of A(k) is as1...skr1...rk
, where (r) = (r1, ..., rk) is the r-th member

of the lexicographic ordering of the integers 1 ≤ r1 < r2 < ... < rk ≤ m and
(s) = (s1, ..., sk) is the s-th member in the lexicographic ordering of all k-tuples
of the integers 1 ≤ s1 < s2 < ... < sk ≤ n.

Thus, if A =


a11 a21
a12 a22
...

...
a1m a2m

, then we have A(2) =


a1212
a1213
...

a12m−1,m

, which is a

(
m
2

)
×

1 matrix.

Theorem 1. If AB = C, then A(k)B(k) = C(k), where A,B are n × p, p × n
matrices respectively.

Theorem 2. The eigenvalues of A(k) are λs1λs2 ...λsk , 1 ≤ s1 < s2 < ... < sk ≤
n, where λ1, ..., λn are the eigenvalues of A.

2.1.3 Additive Compounds

Let A be a n × n matrix and let 1 ≤ k ≤ n. Then the k-th additive compound

A[k] of A is a

(
n
k

)
×
(
n
k

)
matrix defined as follows.

Definition 5.

A[k] =
d

dt
(I + tA)(k)|t=0 = lim

h→0
h−1[(I + hA)(k) − I(k)] (1)

It follows that the entry bsr in B = A[k] is:

bsr =


ar1r1 + · · ·+ arkrk , if(r) = (s)

(−1)i+ja
sj
ri , if exactly one entry ri in (r) does not occur in (s) and sj

does not occur in (r)

0, if (r) differs from (s) in two or more entries

(2)
In the special cases k = 1, k = n, we find

A[1] = A, A[n] = TrA

Properties 1. The term additive compound arises since

(A+B)[k] = A[k] +B[k] (3)
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Theorem 3. The eigenvalues of A[k] are λs1 + λs2 + ... + λsk , 1 ≤ s1 < s2 <
... < sk ≤ n, where λ1, ..., λn are the eigenvalues of A.

Theorem 4. For n× n matrix A, the equation holds:

(exp(A))(k) = exp(A[k]) (4)

2.2 Linear Operators

In this section we consider multiplicative and additive compounds from the
perspective of linear operators between linear spaces.

Definition 6. Suppose that X is an n-dimentional linear space. Then (∧X)k is
the k-th wedge sapce whose bases are ei1∧ei2∧...∧eik , 1 ≤ i1 < i2 < ... < ik ≤ n.
And the entries of v1∧v2∧ ...∧vk at ei1 ∧ei2 ∧ ...∧eik are det(vsij ), 1 ≤ j, s ≤ k

Proposition 1. Suppose A is an n×n matrix and viewed as an operator on the
linear space X, then A(k) and A[k] are matrices viewed as operators on (∧X)k,
satisfying:

A(k)(v1 ∧ v2 ∧ ... ∧ vk) = Av1 ∧Av2 ∧ ... ∧Avk (5)

A[k](v1 ∧ v2 ∧ ... ∧ vk) =

k∑
s=1

v1 ∧ ... ∧Avs ∧ ... ∧ vk (6)

We can prove all of the previous theorems and properties with Properties??.

2.3 Nonhomogeneous differential equations

To consider about the generalized problem, we need to firstly review the original
form. We have homogeneous equation

ẋ = A(t)x (7)

And the nonhomogeneous equation

ẋ = A(t)x+ f(x) (8)

Definition 7. Let X(t) be a fundamental matrix for (7) and let | · | denote
any matrix norm. We may assume without loss of generality that the norm is
induced by a vector norm. The equation is said to be

1. Stable if there is a constant K such that |X(t)| ≤ K, 0 ≤ t <∞.

2. Asymptotically stable if |X(t)| → 0, as t→∞

3. Uniformly stable if there exists a constant K that |X(t)X−1(t0)| ≤ K,
0 ≤ t0 ≤ t <∞.

4. Uniformly asymptotically stable if there exist constants K,α > 0 such that
|X(t)X−1(t0)| ≤ Ke−α(t−t0), 0 ≤ t0 ≤ t <∞

To further get some properties, we need to give some restrictions on those
solutions.

(i) lim sup
t→∞

|y(t)| <∞,

(ii) lim inf
t→∞

|y(t)| = 0⇒ lim
t→∞

y(t) = 0.
(L)
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Proposition 2. Suppose that the homogeneous equation (7) is uniformly stable
and f ∈ L1([0,∞)]). Then the solution space of the nonhomogeneous equation
(8) satisfies condition (L).

Proposition 3. Suppose that the homogeneous equation (7) is uniformly stable
and asymptotically stable and that f ∈ L1([0,∞)). Then all solutions x = x(t)
of the nonhomogeneous equation (8) satisfy limt→∞ x(t) = 0.

Proposition 4. (Muldowney, 1990). Let X be a linear space of functions x :
[0,∞)→ Rn that satisfies (L). Then

codim X0 < k ⇔ X (k)
0 = X (k).

Here X (k) denotes the k-th exterior power of X , 1 ≤ k ≤ n, which is defined by

X (k) = span{x1 ∧ · · · ∧ xk : xi ∈ X}.

and X0 and X (k)
0 denote subspaces of X and X (k), respectively, defined by

X0 = {x ∈ X : lim
t→∞

x(t) = 0},

X (k)
0 = {w ∈ X (k) : lim

t→∞
w(t) = 0}.

Using the three previous propositions, we can state one of the main results:

Theorem 5. Let xi(t) be a solution of

x′ = A(t)x+ fi(t),

where fi ∈ L1[0,∞), i = 1, ..., k. Suppose that the homogeneous equation

y′ = A(t)y

is uniformly stable and that the k-th compound equation

z′ = A[k](t)z

is uniformly stable and asymptotically stable. Then there exist constants c1, ..., ck,
not all zero,such that

lim
t→∞

(c1x1(t) + · · ·+ ckxk(t)) = 0,

3 Description of the general form

Consider the evolution in time of objects like

z(t) = x(t) ∧ y(t). (9)

where x, y are solutions of homogeneous differential equations ẋ = A(t)x and
ẏ = B(t)y, respectively.

We have shown that ż = A[2]z if B(t) = A(t).Now we try to find out if
similar properties hold for general z.
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3.1 Nonexistence of the coefficient matrix

Firstly we want to know if such a matrix M exists, such that z′ = M(t)z. The
solutions x and y to two homogeneous equations can be viewed to be unralated
if there is no restrictions on A(t), B(t).

Proposition 5. If the solutions x(t) and y(t) are independent, i.e. the entries
x1(t), x2(t), ..., xn(t), y1(t), y2(t), ..., yn(t) are viewed as bases of vector spaces,
then the matrix M(t) doesn’t exist.

Proof. To prove the proposition, we simply expand z and its derivative z′. It is
easily seen that

z′ = x′(t) ∧ y(t) + x(t) ∧ y′(t) = A(t)x(t) ∧ y(t) + x(t) ∧B(t)y(t).

Suppose the basis of the space R is e1, ..., en and e1, ..., en be the coordinate
operator. Then the 2-th basis is ei ∧ ej , 1 ≤ i < j ≤ n.

we compare the coordinate at ei ∧ ej .
For z = x(t) ∧ y(t), we have

〈ei ∧ ej , x(t) ∧ y(t)〉 = det

(
ei(x(t)) ei(y(t))
ej(x(t)) ej(y(t))

)
= xi(t)yj(t)− yi(t)xj(t).

And for z′ = A(t)x(t) ∧ y(t) + x(t) ∧B(t)y(t), we have

〈ei ∧ ej , A(t)x(t) ∧ y(t)〉 = det

(
ei(A(t)x(t)) ei(y(t))
ej(A(t)x(t)) ej(y(t))

)
=
( n∑
k=1

aik(t)xk(t)
)
yj(t)−

( n∑
k=1

ajk(t)xk(t)
)
yi(t).

〈ei ∧ ej , x(t) ∧B(t)y(t)〉 = det

(
ei(x(t)) ei(B(t)y(t))
ej(x(t)) ej(B(t)y(t))

)
=
( n∑
k=1

bjk(t)yk(t)
)
xi(t)−

( n∑
k=1

bik(t)yk(t)
)
xj(t).

Observe that the coordinate of z has a form of commutator. Compare it
with z′ we can easily see that if such a matrix M(t) exists and A(t), B(t) are not
degenerate, we must force aik = bik, which implies that A(t) = B(t), z′ = A[2]z,
the former conclusion.

3.2 Special cases

In the previous section, we have shown that M(t) does not exist for generic A(t)
and B(t), because x(t) and y(t) are free. Now we try to examine z under some
special conditions.

Example 1. The easily condition is diagonalization, under which we can direct
solve the solutions x(t), y(t). Assume A(t), B(t) are similar with a diagonal
matrix Λ(t) by constant matrices P,Q, respectively. i.e.

x′(t) = P−1Λ(t)P x(t)

y′(t) = Q−1Λ(t)Q y(t)
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Consider the equation w′(t) = Λ(t)w(t), we can easily get its fundamental matrix

W (t) =


w1(t)

w2(t)
. . .

wn(t)


where wi = exp(

∫
λi(s)ds). Then the fundamental matrix for x, y are P−1W (t)

and Q−1W (t).

Example 2. When A(t), B(t) are similar by a nonsingular constant matrix P ,
i.e. B(t) = PA(t)P−1. If X(t) is a fundamental matrix for x′ = A(t)x then
PX(t) would be a fundamental matrix for y′ = B(t)y. Suppose that xi(t) and
xj(t) are solutions to x′ = A(t)x. We have

z(t) = xi(t) ∧ Pxj(t),
z′(t) = Axi(t) ∧ Pxj(t) + xi(t) ∧ PAxj(t).

the evolution of z(t) can be calculated directly if we have properties of X(t). But
under the assumption that A(t), B(t) are similar, the nonexistence of M(t) still
holds.

3.3 Local problem

We have seen that the holistic system doesn’t hehave well when we focus on the
matrix A(t) and B(t). So we begin with solutions now.

We assume that all solutions x(t) to x′ = A(t)x satisfies condition (L), and
y(t) as well.

Proposition 6. If ∀t ∈ [0,+∞), |A(t) − B(t)| 6= 0, then the solutions of ẋ =
A(t)x and ẏ = B(t)y are linearly independent.

Proof. We only need to prove the solution space W1 of ẋ = A(t)x(t) and solution
space W2 of ẏ = B(t)y satisfy W1 ∩W2 = {0}. Let the fundamental matrix
of ẋ = A(t)x be X(t), we will prove that for every c ∈ Rn/{0}, X(t)c is not a
solution to ẏ = B(t)y.

Suppose X(t)c satisfies ˙X(t)c = B(t)X(t)c, then ( ˙X(t) − B(t)X(t))c = 0.
As X(t) satisfies Ẋ = A(t)X(t), implying (A(t) − B(t))X(t)c = 0. Since X(t)
is non-singular,

|(A(t)−B(t))X(t)| = |(A(t)−B(t)||X(t)| 6= 0.

So the only solution is zero, contradicting with c ∈ Rn/{0}. Therefore
∀c ∈ Rn/{0}, X(t)c is not a solution to the equation ẏ = B(t)y. i.e. W1∩W2 =
{0}

Theorem 6. Suppose that x(t) is a solution of ẋ = A(t)x and that y(t) is a
solution of ẏ = B(t)y, where |A(t)−B(t)| 6= 0, ∀t ∈ [0,∞). Let z(t) = x(t)∧y(t)
be the wedge product of them. Then there exists an n × n matrix C(t), which
satisfies ż(t) = C [2]z(t).
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Proof. Take k − 1 solutions in the solution system of ẋ(t) = A(t)x(t) that are
linearly independent with x(t) and denote them as x2(t), ..., xk(t). And take
another n − k − 1 vectors in the solution system of ẏ(t) = B(t)y(t) that are
linearly indepent with y(t), and denote them as yk+2(t), ..., yn(t). Let

W (t) = [x(t), x2(t), ..., xk(t), y(t), yk+2(t), ..., yn(t)]

By Proposition6, we know that W (t) is non-singular.
Let C(t) = Ẇ (t)W−1(t), which is Ẇ = C(t)W (t), we know that x(t), y(t)

are both solutions to this homogeneous equation. By the former propositions,
we get ż(t) = C [2](t)z(t).

Proposition 7. Suppose |A(t)−B(t)| 6= 0, C(t) is an arbitrary matrix, define

rA
def

==== rank(A(t)− C(t))

rB
def

==== rank(B(t)− C(t))

are constants for all t ∈ [0,∞).
then the equation ż = C [2]z have (n − rA)(n − rB) solutions in the form

x(t) ∧ y(t).

Proof. There is an underlying condition

rA + rB = rank(A(t)−B(t)) + rank(B(t)− C(t)) ≥ rank(A(t)−B(t)) = n

Back to our proof, according to the conditions, we can find n− rA solutions
xi(t), i = 1, ..., n − rA and n − rB solutions yj(t), j = 1, ..., n − rB such that
(A(t)− C(t))xi(t) ≡ 0 and (B(t)− C(t))yj(t) ≡ 0, (n− rA) + (n− rB) ≤ n.

Meanwhile, the solutions x1(t), ..., xn−rA , y1, ..., yn−rB are linearly indepen-
dent by Proposition6. So it can be expanded to a fundamental matrix W (t) of
ż = C(t)z. Then we have xi(t) ∧ yj(t) (1 ≤ i ≤ n − rA, 1 ≤ j ≤ n − rB) are
(n− rA)(n− rB) solutions.

Now we turn to study on holistic system of some selected solutions. Recall
that we have assumed that all solutions to homogeneous equations A(t), B(t)
satisfy condition (L).

Lemma 1. Suppose x(t), y(t) are solutions to ẋ = A(t)x and ẋ = B(t)x, re-
spectively. And x(t) and y(t) are linearly independent. And ∃ C(t) such that
x(t), y(t) are solutions to ż(t) = C(t)z and all solutions to ẇ(t) = C(t)w satis-
fies (L). if limt→+∞ x(t) ∧ y(t) = 0, there are three possible conditions

(1) limt→∞ x(t) = 0.

(2) limt→∞ y(t) = 0.

(3) ∃ c1, c2 ∈ R/{0} such that limt→∞ c1x(t) + c2y(t) = 0.
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Proof. (1) and (2) are obvious, for x(t) and y(t) are bounded because of (L).
Now we assume that both x(t) and y(t) have a distance from 0. According

to (L), there is a sequence {tk}k∈N such that both x(tk), y(tk) have limits when
k →∞, denote as x0, y0 6= 0.

By the hypothesis, limk→∞ x(tk) ∧ y(tk) = x0 ∧ y0 = 0, then there exists
c1, c2 ∈ R/{0} such that c1x

0+c2y
0 = 0. We have limk→∞ c1x(tk)+c2y(tk) = 0.

Since c1x(tk) + c2y(tk) is a solution of ẇ = C(t)w and it gives limt→∞ c1x(t) +
c2y(t) = 0 by condition (L).

Now we begin to study the condition when limt→∞ x(t) ∧ y(t) = 0 for all
solutions x and some y. Denote them as x1, ..., xn and y1, ..., ys, (1 ≤ s ≤ n).

The condition in Proposition6 is strong, without which we can also get some
properties.

Example 3. If y1, ..., ys are the linear combination of xn−s+1, ..., xn, i.e.

[y1, y2, ..., ys] = [xn−s+1, ..., xn]P,

where P is an s× s non-singular matrix, then the matrix is

W (t) = [x1, ..., xn−s, y1, ..., ys]

= [x1, ..., xn−s, xn − s+ 1, ..., xn]

(
In−s

P

)
= X(t)

(
In−s

P

)
where X(t) is the fundamental matrix of ẋ = A(t)x. Let C(t) = ˙W (t)W−1(t)
and we have

C(t) = Ẇ (t)W−1(t) = Ẋ(t)

(
In−s

P

)(
X(t)

(
In−s

P

))−1
= Ẋ(t)(X−1(t) = A(t)

Set s0 = min{n − s, s} we can see that ż(t) = C [s0+1]z(t) is asymptotically
stable. So is ẋ(t) = A[s0+1]x(t)

Remark 1. Observe that if all xi(t) converge to 0 as t → ∞, we have s = n,
And the equation ẋ(t) = A(t)x(t) is asymptotically stable.

Remark 2. If a solution y(t) of ẏ(t) = B(t)y(t) converges to 0 as t → ∞,
then xi(t) ∧ y(t) → 0 as t → ∞ for all i = 1, 2, ..., n, which means y(t) ∈
span[y1(t), ..., ys(t)].

So suppose that x1, ..., xn1 (0 ≤ n1 ≤ n) converge to 0, and y1, ..., ys1 (0 ≤
s1 ≤ s) converge to 0. If there are solutions x(t), y(t) that doesn’t converge to 0.
i.e. n1 < n, s1 < s, we can find c1, c2 ∈ R/{0} such that limt→∞ c1x(t)+c2y(t) =
0 by Lemma1.

We abstract the properties into a proposition, but we need to firstly introduce
a definition.
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Definition 8. Suppose w1(t), ..., wp(t), p ∈ N , t ∈ [0,∞) are p functions that
linearly independent, and satisfy (L). Then there is a smallest number µ ∈ N
such that limt→∞ ∧µs=1z

s(t) → 0, (zs ∈ span[w1(t), ..., wp(t)], s = 1, ..., µ),
called µ− number of the function space w1(t), ..., wp(t).

Proposition 8. limt→∞ x(t) ∧ y(t) = 0 for functions some x and some y that
are all bounded. Denote them as x1, ..., xp and y1, ..., yq. Suppose µ1, µ2, µ0 be
the µ − numbers of [x1, ..., xp], [y1, ..., yq] and [x1, ..., xp, y1, ..., yq]. Then we
have the equation

µ0 = min{µ1, µ2}.

Remark 3. With Proposition8 we can examine solutions to homogeneous dif-
ferential equations, And convert the limit of wedges to asymptotically stability
of other homogeneous equations.

4 Nonhomogeneous linear equations

In this section, we will generalize Theorm 5 by generalizing their coefficient
matrices.

ẋi = Ai(t)xi + f i(t), i = 1, ..., k

and suppose x1, x2, ..., xk are their solutions respectively. Without loss of gen-
erality, we assume that x1, x2, ..., xk are linearly independent. And we assume
that they are independent at each time t, which is a stronger condition.

we try to find an n × n matrix C(t) such that (Ai(t) − C(t))xi(t) = 0 for
i = 1, ..., k. 

a
i
11 . . . ai1n
...

...
ain1 . . . ainn

−
c11 . . . c1n

...
...

cn1 . . . cnn



x

i
1
...
xin

 = 0


(ai11(t)− c11)xi1 + · · ·+ (ai1n − c1n)xin = 0

...

(ain1(t)− cn1)xi1 + · · ·+ (ainn − cnn)xin = 0

We first consider the first row of the equation, and we havex
1
1 . . . x1n
...

...
xk1 . . . xkn


c11...
c1n

 =

a
1
11x

1
1 + · · ·+ a1n1x

1
n

...
ak11x

k
1 + · · ·+ akn1x

k
n


And therefore we can choose c11, ..., c1n such that the equation holds. Symmet-
rically we can choose the rest cs1, ..., csn, s = 2, ..., n, therefore C(t). Now we
have

ẋi = C(t)xi + f i(t), i = 1, ..., k

then we turnt it into the previous form.

Theorem 7. Let xi(t) be a solution of

ẋ = Ai(t)x+ f i(t),
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where fi ∈ L1[0,∞), i = 1, ..., k. Suppose that the homogeneous equation

ẏ = Ai(t)y

is uniformly stable for all i = 1, ..., k and that we can choose C(t) such that the
k-th compound equation

ż = C [k](t)z

is uniformly stable and asymptotically stable, Then there exist constants d1, ..., dk,
not all zero,such that

lim
t→∞

(d1x1(t) + · · ·+ dkxk(t)) = 0,

Remark 4. We assumed that all the solutions are linearly independent at every
time t to ensure that the corresponding matrix is always invertible. Without
this assumption the determinant of the matrix may be 0 at some time. We
think maybe those conditions can be solved and described with the language of
Measure Theory and Probability Theory, which is currently beyond our
ability.

10


	Notations
	Introduction
	Compound Matrices and Differential Equations
	Minors, Cofactor and Adjugates
	Multiplicative Compounds
	Additive Compounds

	Linear Operators
	Nonhomogeneous differential equations

	Description of the general form
	Nonexistence of the coefficient matrix
	Special cases
	Local problem

	Nonhomogeneous linear equations

